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Abstract. This is a report on the TER done under the super-
vision of Prof. Benoit Stroh at Sorbonne University. The aim of
this project is to understand the absolute Galois group of Qp, and
its continuous representations. This is a subject of central impor-
tance in arithmetic and algebraic geometry, especially within the
Langlands curriculum.
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1. Preliminaries

1.1. A brief summary of Witt Vectors. Let R be a ring of char-
acteristic p, then we say that it is perfect if the Frobenius morphism
ϕ : R→ R given by a 7→ ap is an isomorphism. Some examples of per-
fect rings are: finite fields of characteristic p; algebraically closed field
of characteristic p, or the ring of integers of an algebraically closed field
of characteristic p. The theory of Witt vectors allows us to construct a
ring A, in which p in not nilpotent, and such that A is separated and
complete for the topology defined by the ideals pnA, i.e., the p-adic
topology.

Definition 1 (Strict p-ring). Let p be an integral prime. A ring R

is called strict p-ring provided that R is complete and Hausdorff with
respect to the p-adic topology , p is not a zero-divisor in R, and the
residue ring K = R/p is perfect ring (i.e., the map x→ xp is bijective
on K).

Example 1.1. Let R = Zp, then R is complete and Hausdorff with
respect to the p-adic topology, also p is not a zero-divisor in R. The
residue field K = Fp, which is a finite field, so it is perfect. Thus, Zp

is a strict p-ring.

The following is the main result from the theory of Witt vectors.

Theorem 1. Let R be a perfect ring of characteristic p.

(1) There is a strict p-ring W (R) with residue ring R, which is
unique up to canonical isomorphism.
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(2) There exists a unique multiplicative section of π : W (R) → R,
denoted by τ : R → W (R) (i.e., π ◦ τ = idW (R)), called the
Teichmüller map.

(3) Every element x of W (R) can be written uniquely in the form
x =

∑∞
n=0 τ(xn)p

n for xn ∈ R.

(4) The formation of W (R) and τ is functorial in R, in that if f :

R→ R′ is a homomorphism of perfect rings of characteristic p,
and W (R′) is the strict p-ring with residue ring R′ and section
τ ′, then there is a unique homomorphism F : W (R) → W (R′)

making the following two squares commute:

W (R) W (R′)

R R′

F

f

W (R) W (R′)

R R′

F

τ

f

τ ′

The map F is given by

F

(
∞∑
n=0

τ(xn)p
n

)
=

∞∑
n=0

τ ′(f(xn))p
n.

Proof. cf. [6], Chpater 2. ■

Example 1.2. If R = FP , then W (R) = Zp and more generally if R is a
finite field of characteristic p, then W (R) is the ring of integers of the
unique unramified extension of Qp whose residue field is R. If R = Fp,
then W (R) = OQ̂ur

p
.

Example 1.3. Let A be an unramified extension of Zp (i.e. pA is the
unique prime in A) and K = A/pA ≃ Fq. Then A is a strict p-ring, and
is hence the unique strict p-ring with residue field Fq. We can construct
the Teichmuller representatives as follows: we know that Fq is the the
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splitting field of Xq−X ∈ Fp[X], so the non-zero elements of Fq are the
roots of the polynomial Xq−1 − 1. By Hensel’s lemma, each element
α ∈ F∗

q has a unique lift τ(α) ∈ A also satisfying τ(α)q−1 − 1 = 0.
Setting τ(0) = 0 completes the definition of the map τ .

1.1.1. Teichmüller map. Suppose that R is a perfect ring of character-
istic p. If x ∈ x0 ∈ R, then for every n ≥ 0, choose an element x̃n in
W (R) whose image in R under the map π : W (R) → R is xp−n . The
sequence x̃n

pn then coverges in W (R) to an element [x] which depends
only on x. The map τ : R → W (R), x 7→ [x] is the Teichmüller map,
which is a section of the projection map π : W (R) → R. The Teich-
müller elements (the elements in the image of the Teichmüller map)
are a distinguished set of representatives of the elements of R. Given
two elements x, y ∈ W (R), one can write

x+ y =
+∞∑
n=0

[Sn(X, Y )]pn, xy =
+∞∑
n=0

[Pn(X, Y )]pn,

where Sn, PN ∈ Z[Xp−n

i , Y p−n

i ]i=0,...,n are universal homogeneous poly-
nomials of degree 1 (if we consider the degree of Xi and Yi to be 1).
Some initial examples of these polynomials: S0(X0, Y0) = X0 + Y0 and
S1(X0, X1, Y0, Y1) = X1 + Y1 + p¯1((X

1/p
O + Y

1/p
0 )p) − X0 − Y0). The

easiest way to construct W (R) is then by setting W (R) =
∏+∞

n=0 R and
by making it into a ring using the addition and multiplication defined
by the Pn and Sn, which are given simple functional equations.

1.2. Ramification. Fix an algebraic closure Qp of Qp. We have ι :

Q ↪→ Qp → Qp, where the first embedding is the canonical embedding
of Q in Qp, and we canonically extend the p-adic absolute on Q to
Qp, the second map is the unique embedding of Qp into its algebraic
closure, and we uniquely extend the p-adic absolute value on Qp to Qp

(because Qp is complete with respect to the p-adic absolute value). Let
τ : Q → Qp be an emmbedding (non-unique) over ι : Q ↪→ Qp. For
α ∈ Q define

|α|τ =
∣∣τ(α)∣∣

p
,
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then |∗|τ is an absolute value on Q. Then the decomposition group Dp

at p is defined as

Dp := {σ ∈ GQ :
∣∣σ(α)∣∣

τ
= |α|τ ∀α ∈ Q}.

Note that the definition of Dp depends on the choice of τ : Q→ Qp.

Example 1.4. The l-adic cyclotomic character χl : GQ → Q∗
l is unram-

ified at all primes p ̸= l.

Let ρ : GQ → GL(n,K) be an n-dimensional Galois representation over
a field K, and let p be an integral prime.

We recall some basic facts about the extensions of valuations.

Proposition 2. (1) The residue field of Qp is Fp.

(2) Let σ ∈ GQp, then σ preserves the valuation ring OQp
and the

maximal ideal P of Qp.

(3) We have a natural map GQp → GFp, given by σ 7→ σ, where
σ(α) = σ(α).

(4) The above natural map is a continuous homomorphism.

Proof. (1) Let l be the residue field of Qp. Let Fp be the algebraic
closure of Fp containing l. Let α ∈ F p, and suppose f(x) ∈ Fp[x]

be its minimal polynomial. Let F (x) ∈ Zp[x] be a lift of f(x).
Then Qp contains all the roots of F (x), so its residue class field
l must contain all the roots of f(x). Thus α ∈ l. So, l = Fp.

(2) We know that for any α ∈ Qp and σ ∈ GQp , we have
∣∣σ(α)∣∣ =

|α|.

(3) We nned to verify that if σ(α) = 0 in Fp, then α. But σ(α) =

σ(α) = 0, so σ(α) ∈ P, since |α| =
∣∣σ(α)∣∣ < 1, so α ∈ P, i.e.,

α.

(4) The map is a homomorphism is easy to check. To show the
continuity, let Fp ⊂ k ⊂ Fp be a finite extension
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■

1.2.1. Wild Ramification. Let K be an Henselian field with respect to
a valuation v. Let L/K be an algebraic extension, denote by T/K the
maximal unramified subxtension of L/K (which is the composite of all
unramified subextensions).

Proposition 3. The residue class field of T is the separable closure λs

of κ in the residue class field extension λ/κ of L/K, whereas the value
group of T equals that of K.

Proof. Let λ0 be the residue clas field of T and assume that α ∈ λ is
separable over. We need to show that α ∈ λ0. Let f(x) ∈ κ[x] be
the minimal polynomial of α over κ, and f(x) ∈ ≀[x] be a monic lift of
f(x). Then f(x) is irreducble and by Hnesel’s lemma has a root α ∈ L

such that α = α (mod P), i.e., [K(α) : K] = [κ(α) : κ], so K(α)/K is
unramified, K(α) ⊆ T , and thus α ∈ λ0.

We know that e(T/K) = [w(T ∗) : v(K∗)], since T/K is unramified, so
w(T ∗) = v(K∗). ■

If p > 0 is the characteristic of κ, then one has the following weker
notion accompanying that of an unramified extension.

Definition 2. An algebraic extension L/K is called tamely ramified
if the extension λ/κ of the residue class fiels id separable and one has
p ∤ [L : T ]. In the infinite case this latter condition is taken to mean
that the degree of each finite subextension of L/T is prime to p.

Recall that, if L/K is finite, then e(L/K) = e(L/T )e(T/K) = e(L/T ),
since T/K is unramified. Suppose that the valuation v on K is discrete,
and L/K is separable, then e(L/K)f(L/K) = [L : K]. Furthermore,
if λ/κ is separable, then L/K is unramified (resp. tamely ramified)
if and only if e(L/K) = 1 (resp. p ∤ e(L/K)). An extension L/K is
wildly unramified if it is not tamely ramified.
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LKnr

L Knr

Knr ∩ L

K

The above diagram implies that L/K is tamely ramified iff LKnr/Knr

is tamely ramified. Thus it suffices to assume that K = Knr, i.e., L/K
is totally ramified.

Lemma 4. Let K be a p-adic field and L/K be a finite extension, let
πL be a uniformizer of L, then L/K is totally ramified if and only if
OL = OK [πL] and the minimal polynomial of πL is Eisenstein.

Proof. See [7]. ■

Theorem 5. Let K be a p-adic number field and let L/K be a finite
extension such that p ∤ n = [L : K]. Then L/K is totally tamely
ramified if and only if L = K(π

1
n
K).

Proof. Since L/K is totally ramified, we have κL
∼= κK . Let P and

p be the prime ideals of L and K with uniformizers πL and πK resp.
Then, total ramification implies that πn

L = πKu for some u ∈ O∗
L.

Since, κL
∼= κK , there exists u0 ∈ O∗

K such that u (mod P) = u0

(mod p). We can replace, πK with πKu
−1
0 , so that we can assume that

u ≡ 1 (mod P). Now by Hensel’s lemma xn−u has a root α in OL. Let
π = πL

α
, then πn = πK , so the minimal polynomial of π ∈ OL is xn−πK

(this is Eisenstein at πK). Thus from the above lemma OL = OK [π],
so L = K(π) = K(π

1
n
K). ■
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If L/Knr is a finite extension, then it is totally ramified, equivalently
e(L/Knr) = [L : Knr]. Suppose p ∤ [L : Knr], then L/Knr is totally
tamely ramified if and only if L = Knr(π

1
n
K).

Corollary 5.1. Tamely ramified extensions of K form a distinguished
class.

Let Ktr be the maximal tamely ramified extension of K. Then for any
Galois extension L/K we define the wild ramification group P (L/K) ⊆
Gal(L/K) to be Gal(L/L ∩Ktr). We have the following tower:

L

Ktr ∩ L

Kur ∩ L

K

P (L/K)

I(L/K)

giving rise to the filtration

{id} ⊆ P (L/K) ⊆ I(L/K) ⊆ Gal(L/K).

Now, L/K is tamely ramified if and only if Ktr ∩ L = L, i.e., P (L/K)

is trivial. As per usual, we shorten P (K/K) to PK .

Theorem 6. Let L/K be a Galois extension of p-adic number fields.
Then, P (L/K) = I1(L/K) where

I1(L/K) = {σ ∈ Gal(L/K) : σ(α) ≡ α (mod m2
L)}.

1.3. Setting. Let K be a finite extension of Qp. Let vp : K → K →
Q⊔{+∞} be the valuation on K normaliwed by vp(p) = 1. The image
of K× under vp is a discrete subgroup of Q containing Z, so it is equal
to 1

e
for some positive integer e., where e is the absolute ramification

index of K. A uniformizer of K is an element of minimal posiitve
valuation, that is of valuation 1

e
. We fix a uniformizer π of K.
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Let OK = {x ∈ K : vp(x) ≥ 0} be the ring of integers of K. We recall
that OK is a local ring whose maximal ideal is mK = {x ∈ K : vp(x) >

0}. The quotient OK/mK is called the residue field, denote it by k,
then k is a finite field of characteristic p.

Let W (k) denote the ring of Witt vectors with coefficients in k. Set
K0 = Frac(W (k)), by the theory of Witt vectors K0 is the unique un-
ramified extension of Qp with residue field k. We also have a canonical
embedding K0 → K, and thorugh this embedding, K/K0 is totally
ramified of degree e. Therefore, K0 is the maximal subextension of K
which is unramified over Qp.

1.4. The absolute Galois group of K. Let us fix an algebraic clo-
sure K of K, then the valuation vp extends uniquely to K (see [5],
Chapter 2, Theorem 4.8). Let OK = {x ∈ K : vp(x) ≥ 0} be the ring
of integers of K, this is a local ring whose maximal ideal is denoted by
mK .

Let GK = Gal(K/K) be the absolute Galois group of K.

Lemma 7. For α ∈ K and σ ∈ GK we have
∣∣σ(α)∣∣ = |α|.

Proof. Let f(x) be the minimal polynomial of α, then the minimal poly-
nomial of σ(α) is also f(x) (since σ(f(α)) = f(σ(α))), so NK(α)/K(α) =

f(0) = NK(σ(α))/K(σ(α)). It follows that∣∣σ(α)∣∣ = ∣∣NK(σ(α))/K(σ(α))

∣∣1/n =
∣∣NK(α)/K(α)

∣∣1/n = |α|,

where n is the degree of f . ■

Lemma 7 implies that the GK acts on K by isometry and therefore
stabilizes OK and mK . This induces anatural action of GK on the
residue field k. This defines a group homomorphism GK → Gal(k/k),
which is surjective. The kernel of this morphism is the inertia subgroup;
which we denote by IK is what follows. The fixed field of IK is the
maximal unramified extension of K; we will denote it by Kur. In other
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words we have following exact sequence

1→ IK → GK → Gal(k/k)→ 1.

We already know the structure of Gal(k/k): if the cardinality of k is
q = pr, then Gal(k/k) ≃ Ẑ is the profinite group generated by the
Frobenius map Frobq : x→ xq.

We shorten P (K/K) to PK , as we did with the inertia subgroup. By
Theorem 5 we can explicitly describe Ktr. Namely, it’s Kur({ n

√
πK :

(n, p) = 1}) or, combinig this with our description of Kur, it is K({ n
√
πK , ζn :

(n, p) = 1}). This also implies that the most of the complicated na-
ture of GK , where K is a p-adic nulber field, is concentrated in PK .
Thus, statements of the form “Property/claim − − −− for GK is dif-
ficult" is really a statement about PK . In other words, we want to
show that GK/PK is a relatively simple group. We already know that
GK/IK ≃ Gal(k/k) ≃ Ẑ and it follows easily from theorem 5 that
IK/PK ≃= lim←−n,p∤n

Z/nZ ≃
∏

l ̸=p Zl. In fact, Theorem 5 actually shows
more. Namely, it shows that PK is normal in GK and that

GK/PK = Gal(Ktr/K) ≃
∏
l ̸=p

Zl ⋊ Ẑ.

1.5. The cyclotomic extension. Let K be a finite extension of Qp,
and let µn ⊂ K be the group of n-th roots of unity. Then the exten-
sion K(µn)/K is Galois and its Galois group canonically embeds into
(Z/nZ)×: if σ ∈ Gal(K(µn)/K) and ζn ∈ µn is a primitive n-th root of
unity, then σ(ζn) is also a primitive n-th root of unity, so σ(ζn) = ζaσn ,
for some aσ ∈ Z, uniquely determined modulo n by σ, and (aσ, n) = 1.
We obtain the following injection

χn,K : Gal(K(µn)/K) ↪→ (Z/nZ)×, σ 7→ (aσ (mod n)).

Remark. The map χn,K is in general not surjective although it is for
all n when K = Qp.
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If n is coprime to p, then K(µn)/K is unramified, because Xn − 1 is
separable over kK . In this case, K(µn) appears as a subextension of
Kur, and if n = pr is a power of p, then the extension K(µpr)/K is
totally ramified. Let µp∞ := ∪r≥1µpr , then

Kp−cycl = K(µp∞) :=
⋃
r≥0

K(µpr)

is an infinite Galois extension of K. Recall that K(µpr)/K is Galois
and its Galois group Gal(K(µpr)/K) canonically embeds in (Z/prZ)×,
this gives rise to the following injetcive group homomorphism:

χp∞ : Gal(K(µp∞)/K) = lim←−
r

Gal(K(µpr)/K) ↪→ lim←−
r

(Z/prZ)×.

We claim that lim←−(Z/p
nZ)× = Z×

p , where Z×
p are the p-adic units.

Indeed, lim←−(Z/p
nZ)× is a subset consisting of elements (an), where

a1 ̸≡ 0 (mod p), so (an) corresponds to a unit in Zp. Conversely, if∑
n≥1 xnl

n ∈ Z×
p , then x0 ∈ (Z/pZ)∗, thus lim←−(Z/p

nZ)× = Z×
p . Let

χcycl : GK → Z×
p

be the homomorphism obtained by precomposing χp∞ with the canon-
ical surjection GK ↠ Gal(K(µp∞)/K).

Now, Z×
p ⊂ Q×

p = Qp \ {0}, so we actually have the following group
homomorphism

χcycl : GK → Z×
p ↪→ Q×

p = GL(1,Qp).

It is easy to see that:

Ker(χcycl) = {σ ∈ GK : σ|K(µpr ) = id ∀ r ≥ 1.}

So the subextension of K/K corresponding to Ker(χcycl) is K(µp∞)/Q.
More generally, for all positive integers n ≥ 1, the subextension asso-
ciated to Ker(χcycl (mod pr)) is K(µpr)/K.
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2. Galois Representations

The main program of algebraic number theory and arithmetic geome-
try is to understand the structure of the Galois group GQ = Gal(Q/Q).
One can try to do so by understanding the representations of GQ. How-
ever, this in itself is not an easy task, as the group GQ is extremely
big. We know that the absolute Galois group GQp = Gal(Qp/Qp) of
Qp for a prime p is naturally embeded into GQ and the image of GQp

in GQ is called the decomposition group at p, denoted by Dp. It is very
difficult to directly study the representations of GQ, and the theory
that is obtained is not very rich. Instead, by studying the restriction of
representation of GQ to GQp we get a richer theory. In general, one can
study the representations of the Galois group of any finite extension K

of Qp.

2.1. Complex Galois Representations. In this section, we anal-
yse the complex representations of GQ. Let ρ : GQ be a complex n-
dimensional Galois representation. The topologies of GQ and C are very
qualitatively different, and this puts strong restrictions on the possible
ρ. One such difference is that GQ has arbitrary small subgroups, in the
sense that any neighborhood of the identity contains some subgroup
(because the open subgroups Gal(Q/K) for K/Q finite Galois form a
neighborhood basis of identity). While, as we know that, GL(n,C) has
no small subgroups: there exists a neighborhood V of identity, such
that the only subgroup contained in V is trivial.

Proposition 8. Let ρ : GQ → GL(n,C) be a complex Galois repre-
sentation. Then ρ factors as GQ ↠ Gal(K/Q) → GL(n,C) for some
finite Galois K/Q.

Proof. Let V ⊆ GL(n,C) be an open neighborhood of identity such
that it does not contain any non-trivial subgroups of GL(n,C). Since
ρ is continuous, ρ−1(V ) is a open neighborhood of identity in GQ, so
there is a finite subset S ⊂ Q, such that G(S) ⊂ ρ−1(V ), but G(S) =
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Gal(Q/K), where K = Q(S). So, G(S) ⊂ Ker(ρ) and the result
follows. ■

Thus, the theory of complex Galois representations is identical to the
representation theory of finite groups [6].

2.2. l-adic Galois Representations. Let K/Qp be a finite extension,
then a Galois representation ρ : GK → GL(n, F ) of GK is called a l-adic
Galois representation of dimension n of GK if F is a finite extension of
Ql (where l is some prime may or may not be equal to p). Among all
representations of GK , the simplest ones are of course one dimensional
representation (also called characters of GK). We have already seen an
example of such character: the cyclotomic character χcycl. We give two
more examples of such characters:

Example 2.1.

ωcycl : GK

χcycl−−−→ Z×
p

(mod p)−−−−−→ F×
p

[·]−→ Z×
p

where the last map takes an element to its Teichmuller representative.
This is a finite order character, whise order divides p− 1. When K =

Qp, the order of ωcycl is exactly p− 1.

Example 2.2. The other family of characters is that of unramified char-
acters, i.e., those which acts on the inertia subgroup trivially. Since
GK/IK ≃ Gal(k/k) is procyclic, continuous unramified characters are
easy to describe: they are all of the form:

µ : GK → GK/IK ≃ Gal(k/k)
Frobq→λ−−−−−→ Z×

p

for λ varying in Z×
p .

We can describe all the characters of GK explicitly using local class
field theory.

At this point, we want to emphasize that p is a fixed prime from the
beginning and l is any prime. When l ̸= p, then the incompatibility
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of the topologies of GK (p-adic in nature) and GL(n, F ) (F is an ex-
tension of Ql, so l-adic in nature), gives rise to the famous theorem of
Grothendieck:

Theorem 9 (Grothendieck’s l-adic monodromy theorem). Let K/Qp

be a finite extension. Then all l-adic representations of GK are poten-
tially semistable.

Proof. See [4]. ■

In what follows our main focus will be the p-adic Galois representations,
that is, when l = p.

3. Semi-linear representations

Denote by Cp the p-adic completetion of Qp, it is well known that Cp

is algebraically closed.

Let K be a finite extension of Qp, let V be a given representation of
GK . Let W = Cp⊗Qp V , then W is a Cp-representation of GK , because
there is a natural action of GK on Cp.

In what follows, we let G be a topological group and B be a topological
ring equipped with a continuous action of G, compatible with the ring
structure of B: g · (a+ b) = g · a+ g · b, and g · (ab) = (g · a)(g · b) for
all g ∈ G and a, b ∈ B.

Definition 3. A B-semi-linear representation (or B-representation) is
a B-module V equipped with a continuous action of G such that :

g · (x+ y) = g · x+ g · y and g · (ax) = g(a)g(x),

for all g ∈ G, a ∈ B, and x, y ∈ V .

Remark. The following are easy observations:
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(1) Clearly, if the action of G on B is trivial, then the notion of
B-semi-linear representations coincides with the notion of B-
linear representations. If B = Qp with the p-adic topology then
we say that it is a p-adic representation.

(2) By definition, B itself is a B-semi-linear representation, and we
can make Bn into a B-semi-linear reprsentation by definining
component wise G-action.

Let V1 and V2 be two B-semi-linear reprsentations of G over B, a
homomorphism ϕ : V1 → V2 is a B-linear mapping which commutes
with the G action. Thus, the B-semi-linear representations form a
category, we denote it by RepB(G).

3.0.1. Scalar extension. Let C be a closed subring of B, which is stable
under the G-action: g · c ∈ C ∀c ∈ C and g ∈ G. So we have the
category RepC(G) of C-semi-linear representations of G, and there is
a canaonical functor RepC(G)→ RepB(G) taking W to B ⊗C W .

This construction allows us to obtain semi-linear representations from
the classical linear representations. Let E be a field endowed with triv-
ial G-action, and let B be an E-algebra with a continuous G-action.
Then the category RepE(G) is the category of classical (linear) repre-
sentations of G over E. We can obtain B-semi-linear representations
from E-linear reprsentations by extension of scalars: V 7→ V ⊗E B.

Example 3.1. Let χ : G → E∗ = GL(1, E) be a multiplicative charac-
ter. Let E = ⟨eχ⟩, where {eχ} is a basis of E over E, and g·eχ = χ(g)eχ.
We know that the basis of B⊗EE is {1B⊗E eχ}, and g ·(b(1B⊗E eχ)) =

g · (b ⊗E eχ) = g · b ⊗E g · eχ = (g · b)(g · (1B ⊗E eχ)). We denote the
B-semi-linear representation obtained in this manner by B(χ).

Definition 4. We say that a B-representation W is free if W as a
B-module is free. Furthermore, a free B-representation W of G is said
to be trivial if one of the following equivalent conditions hold:
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(1) There exists a G-invariant B-basis of W .

(2) W is isomorphic to Bd in RepB(G) for some d ∈ Z>0.

Let V ∈ RepB(G) be a B-semi-lienar representation, then we denote
by V G the subset of V which consists of the fixed points of V under
the action of G: V G := {v ∈ V : g · v = v∀g ∈ G}. Naturally, V G is
endowed with a BG module structure. We have the following natural
functors:

RepB(G)→ RepBG(G)

V 7→ V G

RepBG(G)→ RepB(G)

W 7→ B ⊗BG W.

Since V G ⊂ V , the universal property of the extension of scalars implies
that there exists a unique morpshim αV : B ⊗BG V G → V, such that
the following diagram commutes:

B ⊗BG V G V

V G

αV

v 7→1⊗v

Remark. If V is a trivial representation in RepB(G), then the morphism
αV : B⊗BG V G → V is an isomorphism, because (Bd)G = (BG)d. Sup-
pose that V and V G are free of finite rank over B and BG respectively,
then the coverse also holds true.

3.1. Hilbert’s theorem 90. We now device a machinery to recognize
trivial representations. In this subsection, we assume that L is an
abstract topological field with a continuous action of a finite group G,
endowed with the discrete topology. Under these assumptions, K = LG

is a subfield of L, called the fixed field of G and L/K is a finite Galois
extension with Galois group G.
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Theorem 10. Keeping the above notations and the assumptions. Let
V ∈ RepL(G), the following holds:

(1) the morphism αV : L⊗K V G → V is surjective,

(2) if V is finite dimensional over L, then αV is an isomorphism,
that is W is trivial.

Proof. (1) Let G = {g1, . . . , gn} (g1 = id) and λ1, . . . , λn be a basis
of L over K. Then by Artin’s linear independence theorem
the matrix (gi(λj))ij is invertible, so there exists a non-trivial
solution to the following linear system:

g1(λ1) g1(λ2) · · · g1(λn)

g2(λ1) g2(λ2) · · · g2(λn)
...

... . . . ...
gn(λ1) gn(λ2) · · · gn(λn)




x1

x2

...
xn

 =


1

0
...
0


Denote such a solution by (µ1, µ2, . . . , µn)

t, then we have the
following

n∑
i=1

µig(λi) =

1 if g = id

0 otherwise.

Define the trace function Tr : V → V as v 7→
∑

g∈G g · v. Then,
h ·Tr(v) = h ·

∑
g∈G g · v =

∑
g∈G(hg) · v =

∑
g∈G g · v = Tr(v).

Therefore, Tr(V ) ⊂ V G. Furthermore, we have
n∑

i=1

µi Tr(λiv) =
n∑

i=1

µi(
∑
g∈G

g · (λiv))

=
∑
g

n∑
i=1

µig · (λiv)

=
∑
g

 n∑
i=1

µig · λi

 g · v

= v
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which implies the surjectivity because:

αV (
n∑

i=1

µi ⊗ Tr(λiv)) =
n∑

i=1

µi Tr
(
λi(v)

)
= v.

(2) Suppose V is a finite dimensional L-vector space. Then injec-
tivity is equivalent to the claim that αV carries a K-basis of
V G to a L-linearly independent set in V , so it is sufficient to
show that every finite family of linearly independent vectors
in V G over LG = K remains linearly independent over L. Let
(v1, . . . , vm) be a linearly independent family in V G over K. We
suppose that m is minimal such that there exist 0 ̸= ai ∈ L for
i ∈ {1, . . . ,m}. By rescaling and shuffling we assume without
loss of any generality that a1 = 1. Let g ∈ G, then

(g − id)(a1v1 + · · ·+ amvm) = 0,

since a1 = 1 and g · v1 = v1, we have (g(a2) − a2)v2 + · · · +
(g(am)− am)vm = 0, which contradicts the minimality of m, so
g(ai) = ai for i ≥ 2 and for all g ∈ G so ai ∈ K for i ≥ 2, which
is a contradiction because (v1, . . . , vm) is linearly independent
over K, hence ai = 0 for i ≥ 2.

■

Remark. Theorem 10 does not hold in general when G = Gal(L/K),
where L/K is an infinite extension and G is equipped with the nat-
ural profinite topology. Otherwise, consider G = GQp = Gal(Qp/Qp)

with its natural action on L = Qp, then K = LG = Qp Consider
the Qp-semi-linear representation Qp(χcycl) obtained by the cylotomic
character χcycl. Then Qp(χcycl) is not isomorphic to Qp in the category
RepQp

(GQp).
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4. Notion of B-admissible representations

In this section we describe Fontaine’s general philosophy for isolating
the most interesting representations of the Galois group of a p-adic
field. In this section let G be a topological group, and E be a fixed
topological field such that the action of G on E is trvial. Let B be
atopological E-algebra with a G-action. The category RepE(G) is the
category of E-linear representations of G and the category RepB(G) is
the category of B-semi-linear reprsentations of G.

Definition 5 (B-admissible). Let V ∈ RepE(G) be finite dimensional
over E. We say that V is B-admissible if the B-semilinear representa-
tion B ⊗E V is trivial.

We denote by RepB−adm
E (G) the full sub-category of RepE(G) consisting

of finite dimensional representations of E which are B-admissible.

Proposition 11. The category RepB−adm
E (G) is stable under direct

sums, tensor products, and duals: let V, V ′ ∈ RepE(G) be B-admissibe
representations, then V ∗, V ⊕ V ′ and V ⊗ V ′ are also B-admissible.

Proof. ■

Definition 6. The E-algebra B is said to (E,G)-regular if the follow-
ing conditions hold:

(1) B is a domain,

(2) (FracB)G = BG,

(3) if b ∈ B, b ̸= 0 and the E-line Eb is stable under G, then b ∈ B∗.

Remark. If B is (E,G)-regular, then BG is a field: let b ∈ BG, b ̸= 0,
then clearly the line Eb is stable under G. Thus, b is a unit in B, so
BG is a field. The second condition implies that b−1 ∈ BG.

Example 4.1. BHT is (Qp, GK)-regular.
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Suppose that B is (E,G)-regular, and let V ∈ RepE(G) be any finite
dimensional E-representation of G, then B ⊗E V , equipped with the
G-action g(λ ⊗ v) = g(λ) ⊗ g(v), is a free B-representation of G. Let
DB(V ) = (B ⊗E V )G. Then DB could be seen as a fucntor from
RepE(G) to the category of BG-vector spaces. Recall from § 3.0.1 that
we have the following map:

αB⊗EV : B ⊗BG DB(V )→ B ⊗E V

λ⊗ v 7→ λv

αB⊗EV is B-linear and commutes with the action of G, where G acts
on B ⊗BG DB(V ) via g(λ⊗ x) = g(λ)⊗ x.

Theorem 12. Assume B is (E,G)-regular. Then,

(1) For any finite dimensional E-representation V ∈ RepE(G),
the map αB⊗EV : B ⊗BG DB(V ) → B ⊗E V is injective and
dimBG(DB(V )) ≤ dimE V . Furthermore, the following are equiv-
alent:

(a) B ⊗E V is trivial (equivalently V is B-admissible),

(b) the morphism αB⊗EV is an isomorphism,

(c) dimBG DB(V ) = dimE V .

(2) The restriction of DB to RepB−adm
E (G) is an exact and faithful

functor. In RepB−adm
E (G) we have the following:

(a) RepB−adm
E (G) is stable under subrepresentations, quotients,

direct sums, tensor products, and duals.

(b) For V, V ′ ∈ RepB−adm
E (G), there is a natural isomorphism

DB(V )⊗BG DB(V
′) ≃ DB(V ⊗E V ′).

Proof. (1) We first show the injectivity. Let L := Frac(B), since
B is (E,G)-regular, we have LG = BG = K, and we have the
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following commutative diagram:

B ⊗K (B ⊗E V )G B ⊗E V

B ⊗K (L⊗E V )G

L⊗K (L⊗E V )G L⊗E V

αB⊗EV

αL⊗EV

where the vertical arrows are injective by construction. So,
to prove the injectivity of the top arrow it suffices to prove
the injectivity of the bottom arrow, but the injectivity of the
bottom arrow follows by copying the argument of Theorem 10
(2). To prove the equivalence of (a) and (b) in (1), we note
that the condition V is B-admissible means that there exists a
B-basis {x1, . . . , xr} of B⊗E V such that each xi is G-invariant.
Since αW (1⊗xi) = xi, and αW is always injetcive, the condition
is equivalent to αW being an isomorphism.

Now we prove the equivalence of (b) and (c) in (1). It is clear
that (b) implies (c). So assume (c) and denote by d the com-
mon dimension of V over E and DB(V ) over BG. Let {ej}
be a K-basis of DB(V ) and let {vi} be a E-basis of V , so
relative to these bases we can express αB⊗EV using a d × d

matrix (bij) over B. In other words, ej =
∑

bij ⊗ vi. The
determinant detαB⊗EV := det

(
bij
)
∈ B is nonzero due to the

isomorphism property over L = Frac(B) (as scalar extension of
αB⊗EV to a L-linear injection between C-vector spaces with the
same finite dimension d must be an isomorphism). We want
that det

(
αB⊗EV

)
∈ B×, so then αB⊗EV is an isomorphism over

B. Since B is an (E,G)-regular ring, to show that nonzero
det
(
αB⊗EV

)
∈ B is a unit it suffices to show that it spans a

G-stable E-line in B. The vector ej =
∑

bij ⊗ vi ∈ DB(V ) ⊂
B ⊗E V are G-invariant, so passing to the d-th exterior powers
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on αB⊗EV gives that

∧d(αB⊗EV )(e1 ∧ · · · ∧ ed) = det
(
bij
)
v1 ∧ · · · ∧ vd

is a G-invariant vector in B⊗E∧dV . But G acts on v1∧· · · ∧ by
some character η : G→ E∗, so G muct act on det

(
bij
)
∈ B\{0}

through the E∗-valued η−1. Hence, det
(
bij
)

is invertible in B

and therefore αB⊗EV is an isomorphism.

■

5. Cp-admissibility

5.1. Ax-Sen-Tate Theorem. For any α ∈ K, set

∆K(α) = min{v(α′ − α)},

where α′ are conjugates of α over K. Then ∆K(α) = +∞ if and only
if α ∈ K.

We now state and prove the Ax-Sen’s lemma, which says that if all the
conjugates α′ are close to α, then α is close to an element of K. We
follow [1]. We begin with a lemma.

Lemma 13. Let R ∈ K[X] be a monic polynomial of degree d ≥ 2 such
that v(λ) ≥ r for any root λ of R in K. Let m ∈ N with 0 < m < d,
then there exists µ ∈ K, such that µ is a root of R(m)(X), the m-th
derivative of R(X), and

v(µ) ≥ r −
1

d−m
vp

((
d

m

))
.

Proof. We can write

R(X) =
d∏

i=1

(X − λi) =
m∑
i=0

(−1)iSd−i(λ1, . . . , λd)X
i,

where Sn (n > 0) is the n-th symmeteric polynomial in d variables,
and S0 = 1. Let bi = (−1)iSd−i(λ1, . . . , λd), so R(X) =

∑d
i=0 biX

i. It
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follows that vp(bi) ≥ (d−m)r. Write

1

m!
R(m)(X) =

d∑
i=m

(
i

m

)
biX

i−m =

(
d

m

) d−m∏
i=1

(X − µi),

then bm =
(
d
m

)
(−1)d−mµ1µ2 · · ·µd−m. Therefore, we have

1

(d−m)

d−m∑
i=1

vp(µi) =
1

(d−m)
vp(bm)−

1

(d−m)
vp

((
d

m

))

≥ r − 1

(d−m)
vp

((
d

m

))
.

So exists i, such that

vp(µi) ≥ r − 1

(d−m)
vp

((
d

m

))
.

Which completes the proof of the lemma.

■

Proposition 14 (Ax-Sen’s Lemma). Let K/Qp be a finite extension,
and α ∈ K, then there exists a ∈ K such that vp(α − a) > ∆K(α) −

p

(p− 1)2
.

Proof. For any n ∈ Z≥1, let l(n) be the largest integer l such that
pl ≤ n. Let ε(n) =

∑l(n)
i=1

1
pi−pi−1 . Then

n < p⇔ l(n) = 0⇔ ε(d) = 0.

Claim. If [K(α) : K] = d, then there exists a ∈ K such that vp(α −
a) > ∆K(α)− ε(d).

We note that the above claim implies the proposition, since ε(d) ≤
ε(d+ 1) and limd→+∞ ε(d) = p

(p−1)2
.

To prove the claim we proceed by induction. If d = 1, then l(d) = 0 =

ε(d), and ∆K(α) = 0, take a = α− p, so that vp(α− a) = 1.
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Now we assume that d ≥ 2. Let P ∈ K[X] be the minimal polynomial
of α over K. Let

R(X) = P (X + α), R(m)(X) = P (m)(X + α).

We have two cases: if d is not a power of p, then d = psn, s ∈ Z≥0,
where n ≥ 2 is coprime to p, otherwise, write d = psp, s ∈ Z≥1. Let
m = ps, so that m < d.

Let r = ∆K(α), by lemma 13, there exists µ ∈ K, such that µ is a root
of R(m)(X), and

vp(µ) ≥ r − 1

d−m
vp(

(
d

m

)
).

Set β = µ + α. Then P (m)(β) = 0, and P (m)(X) ∈ K[X] with degree
d−m, so β is algebraic over K of degree ≤ d−m. If β ∈ K, then we
choose a = β. Otherwise β /∈ K, then by induction hypothesis there
exists a ∈ K such that vp(β − a) ≥ ∆K(β)− ε(d−m).

Now we want to verify that vp(α− a) > r − ε(d).

Case 1: Suppose d = psn (n ≥ 2), n is coprime to p and m = ps.
Recall, the Legendre’s formula:

vp(k!) =
∞∑
i=1

⌊
k

pi

⌋
.

We have the following:

vp(d!) = ps−1n+ · · ·+ n+ vp(n!)

vp(m!) = ps−1 + · · ·+ p+ 1

vp((d−m)!) = ps−1(n− 1) + · · ·+ (n− 1) + vp((n− 1)!).

Since, (n, p) = 1, we have vp(n!) = vp((n−1)!). Therefore, vp(
(
d
m

)
) = 0,

so vp(µ) = vp(β − α) ≥ r. If β′ is a conjuagte of β, β′ = α′ + µ′ then

vp(β
′ − β) = vp(α

′ − α + µ′ − µ) ≥ r,

which implies ∆K(β) ≥ r. Hence vp(β − a) ≥ r − ε(d − ps), and
v(α− a) ≥ min{vp(α− β), vp(β − a)} ≥ r − ε(d).
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Case 2: Suppose d = psp, and m = ps. Then vp(
(
d
m

)
) = 1, and

vp(µ) ≥ r − 1
ps+1−ps

. Let β′ be any conjugate of β, β′ = µ′ + α′, then

vp(β
′ − β) = v(µ′ − µ+ α′ − α) ≥ r − 1

ps+1 − ps
,

which implies ∆K(β) ≥ r − 1
ps+1−ps

. Then

vp(β − a) ≥ r − 1

ps+1 − ps
− ε(ps+1 − ps) = r − ε(ps+1).

Hence vp(α− a) = v(α− β + β − a) ≥ r − ε(d). ■

We give an application of Ax-Sen’s Lemma (proposition 14).

Proposition 15. We have CGK
p = K.

Proof. Let α ∈ CGK
p . Since Cp is a completion of Qp, we can find

element αn ∈ Qp, such that vp(α− αn) ≥ n, it follows that

vp(σ(αn)− αn) ≥ min{vp(σ(αn − α)), vp(αn − α)} ≥ n,

for any σ ∈ GK . Thus ∆K(αn) ≥ n, the above theorem implies that
there exists an ∈ K such that vp(αn − an) ≥ n − ε, where ε = p

(p−1)2
.

This implies vp(α− an) ≥ n− ε. The sequence (an)n≥1, then converges
to α. Since an ∈ K for all n, we obtain α ∈ K. ■

5.2. Hilbert’s Theorem 90 for infinite extensions. As we have
seen already that Theorem 10 does not hold for infinite extension, we
now present an analog for infinite extensions. Let Kur be the maximal
unramified extension of K inside K, denote by K̂ur the p-adic comple-
tion of Kur, then we have a natural embedding of K̂ur into Cp and we
equip K̂ur with the canonical action of Gal(Kur/K).

Lemma 16. Every finite unramified extension L/K is Galois. Fur-
thermore, there exists a unique element FrobL/K ∈ Gal(L/K), called
the arithmetic Frobenius such that for every α ∈ OL, FrobL/K(α) ≡ αq

(mod πL), where q is a p-power such that kK = Fq, and πL is a uni-
formizer of L.
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Proof. Since L/K is unramified, L = K(α) for some α ∈ OL, such that
fα,L/K ∈ kK [x] is separable, where fα,L/K is the minimal polynomial
of α, whixh is also separable. Therefore, L/K is Galois. We have the
natural surjection π : Gal(L/K) ↠ Gal(kL/kK), since L/K is unram-
ified, this surjection is also injective, so π : Gal(L/K)

∼−→ Gal(kL/kK).
Now, let kL = Fqn then kL/kK is a Galois extension with cyclic Ga-
lois group generated by the Frobenius element: σ : a 7→ aq. Take
FrobL/K = π−1(σ) be the corresponding element in Gal(L/K). ■

Remark. The inverse Frob−1
L/K of FrobL/K in Gal(L/K) is called the

geometric Frobenius.

Recall that Fq = ∪n≥1Fqn , and that Kur = ∪(m,p)=1K(µm) (union of all
unramified extensions L/K inside Qp). This is Galois and we have

Gal(Kur/K) ≃ Gal(Fq/Fq) = lim←−
n≥1

Gal(Fqn/Fq) ≃ lim←−
n≥1

Z/nZ = Ẑ.

The group automorphism ϕq : x 7→ xq is a topological generator of
Gal(Fq/Fq), let FrobK be the element in Gal(Kur/K) corresponding to
ϕq. Therefore, Gal(Kur/K) is a procyclic group.

Proposition 17. Any finite dimensional K̂ur-semi-linear representa-
tion of Gal(Kur/K) is trivial.

Proof. Let O be the ring of integers of Kur, and m be the maximal
ideal of O. Let k be the residue field of K, then the residue field O/m
of Kur is isomorphic to the separable closure (here it is equal to the
algebraic closure) k of k.

Now, suppose that W is a finite dimensional K̂ur-semi-linear repre-
sentation. We want to show that there exist a Gal(Kur/K)-invariant
K̂ur-basis of W . Fix B = (v1,0, . . . , vd,0) as a K̂ur-basis of W . We
claim that there exist a sequence Bn = (v1,n, . . . , vd,n) of K̂ur-basis of
W such that B0 = B and vi,n+1 ≡ vi,n (mod mn) and Frob(vi,n) ≡ vi,n

(mod mn) for all i ∈ {1, . . .} By induction. Firstly for n = 1, we have
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to show that vi,2 ≡ vi,1 (mod m) and Frob(vi,1) ≡ vi,1 (mod m) for all
i.

Suppose that Bn has been constructed. To construct Bn+1 from Bn,
since vi,n+1 ≡ vi,n (mod mn), we look for vectors (w1, . . . , wn) in OW

such that Frob(vi,n + πnwi) ≡ vi,n + πnwi (mod mn+1) for all i. Let wi

be the image of wi in OW/mOW , so in other words we need to solve
the following system of equations:

Frob(wi)− wi = ci(1 ≤ i ≤ d)

where ci is defined as the image of Frob(vi,n−vi,n)

πn in OW/mOW . So it
is sufficient to show that Frob− id is surjective on OW/mOW . This
follows from the triviality of OW/mOW and the fact the Frob− id is
surjective on k.

■

We are now ready to prove the main theorem of this section:

Theorem 18. Let V be a Qp-linear finite diemnsional representation
of GK. Then V is Cp admissible if and only if the inertia subgroup of
GK acts on V through finite quotient.

Proof. First we assume that the inertia subgroup acts on V through
finite quotient, that is there exists a finite extension L of Kur such
that Gal(K/L) acts trivially on V . By Hilbert’s theorem for finite
extensions (Theorem 10), the L-semi-linear representation L⊗Qp V ad-
mits an L-basis v1, . . . , vd on which the action of Gal(L/Kur) is trivial.
Consequently, Gal(Kur/K) operates on the ∩Kur-span of v1, . . . , vd.
By Proposition 17, this semi-linear representation is trivial. Therefore
V is (L · ∩Kur)-admissible. It is then also Cp-admissible.

The hard part of the proof is the converse. For that we refer to [2]. ■
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6. Hodge-Tate representations

Since we proved that a Qp−linear finite dimensional representation of
GK is Cp−admissible if and only if the inertia subgroup of GK acts on
V by finite quotient, we showed that Cp−admissibility detects those
representations which are potentially unramified and so it’s too strong
and doesn’t capture all interesting representations as shows the follow-
ing example

Example 6.1. The p-adic cyclotomic character

χcycl : Gal(Qp/Qp)→ Z×
p ⊂ Q×

p

is not Cp−admissible

The main idea of what will follows in this chapter, the Sen’s theory, is
that we can still extract a lot of arithmetic informations from the data
of Cp ⊗Qp V .

Definition 7. A Qp−linear representation of GK is said Hodge-Tate
if Cp ⊗Qp V decomposes as

Cp ⊗Qp V = Cp(χ
n1
cycl)⊕ Cp(χ

n2
cycl)⊕ · · · ⊕ Cp(χ

nd
cycl)

for some integers n1, . . . , nd

Proposition 19. The integers ni’s of the decomposition of Cp ⊗Qp V

are uniquely determined up to permutations, they are called Hodge-Tate
weights of the representation V .

Proof. Let

Cp ⊗Qp V = Cp(χ
n1
cycl)⊕ Cp(χ

n2
cycl)⊕ · · · ⊕ Cp(χ

nd
cycl)

= Cp(χ
m1
cycl)⊕ Cp(χ

n2
cycl)⊕ · · · ⊕ Cp(χ

mr
cycl)

Let W = HomCp(Cp(χ
n
cycl),Cp(χ

m
cycl)) ≃ Cp(χ

n−m
cycl ) equpped with its

Galois action, it follows that

HomRepCp (GK)(Cp(χ
n
cycl),Cp(χ

m
cycl)) ≃ Cp(χ

n−m
cycl ) = WGK
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so if n = m, CGK
p = K by the Ax-Sen-Tate theorem while if n ̸= m

as we have shown previously V = Qp(χ
n−m
cycl ) is not admissible i.e. W

is not trivial, hence we showed that HomRepCp (GK)(Cp(χ
n
cycl),Cp(χ

m
cycl))

is a one dimensional K−vector space if n = m and is zero otherwise,
from which d = r and ni = mi ∀i = 1, . . . , n. ■

Remark. In the previous proof we have shown that Cp(χ
n
cycl) has no

non-zero invariant vector when n ̸= 0.

Definition 8. Let Cp(n) the vector space Cp with the following action
of GQp = Gal(Qp/Qp):

g · v = χcycl(g)
ng(v) ∀g ∈ GQp

and Qp(n) as the vector space Qp with the action induced by the pre-
vious one.

Definition 9. We call Hodge-Tate ring the following ring:

BHT =
⊕
n∈Z

Cp(n)

≃
⊕
n∈Z

Cp(χ
n
cycl)

≃ Cp[t, t
−1]

and we denote
B′

HT = Cp((t))

Proposition 20. We have the following properties:

(1) BHT ⊂ Frac(BHT ) ⊂ B′
HT .

(2) (BHT )
GQp = (B′

HT )
GQp = Qp

Proof. The first property is clear while the second follows directly from
the Ax-Sen-Tate theorem because

(BHT )
GQp =

⊕
(Cp(n))

GQp = Qp ⊕ 0⊕ · · · ⊕ 0⊕ · · · = Qp
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while, since the graded ring of B′
HT ,

Gr∗B
′
HT =

⊕
m∈Z

tmCp[[t]]/t
m−1B′

HT

, is (canonically) isomorphic to BHT we have a GQp−equivariant inclu-
sion BHT ↪→ B′

HT , it follows that (B′
HT )

GQp = Qp. ■

Remark. We had shown previously that BHT and B′
HT are (Qp, GK)−regular.

We recall breifly the definition of admissibility in the actual setting and
we will prove later that is equivalent to being Hodge-Tate

Definition 10 (BHT -admissible (resp. B′
HT -admissible). Let V ∈

RepE(G) be finite dimensional over E. We say that V is BHT -admissible
(resp- B′

HT−admissible) if the BHT -semilinear representation BHT⊗EV

is trivial (resp. if the B′
HT -semilinear representation B′

HT ⊗E V is triv-
ial)

Theorem 21. Let V be a finite dimensional Qp−representation, then

V is Hodge-Tate ⇔ it is BHT − admissible ⇔ it is B′
HT − admissible

Proof. Since BHT = ⊕m∈ZCp(χ
m
cycl) as a Cp−semilinear representation

it follows that

(V ⊗Qp BHT )
GK ≃

⊕
m∈Z

(V ⊗ Cp(χ
m
cycl))

GK

If V is Hodge-Tate with m1, . . . ,ms as Hodge-Tate weights and e1, . . . , es

as corresponding multiplicities. Therefore the space (V ⊗Cp(χ
−mi
cycl ))

GK

has then dimension ei and so, summing up, all these contrinutions, we
find that (V ⊗Qp B

GK
HT has the same Qp−dimension of V .

Conversely ■

Example 6.2 (Hodge-Tate classification of characters of GQp). When-
ever p > 2, a character of GQp with values in Q×

p is Hodge-Tate if and
only if it’s of the form

µλ · χa
cycl · ωb

cycl
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where a ∈ Z, b ∈ Z/(p− 1)Z

Proof. We already know that all the characters of GQp with values in
Q×

p are of the form
µλ · χa

cycl · ωb
cycl

where a ∈ Zp, b ∈ Z/(p − 1)Z and since the representations Cp(µλ)

and Cp(ω
b
cycl) are Cp−admissible we obtain

Cp(µλ · χa
cycl · ωb

cycl) ≃ Cp(χ
a
cycl)

hence the Hodge-Tate weight is a and so it should be an integer. ■
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